DairyNote

Energy Requirements - Lactation

Lactating cows require energy to support maintenance, milk production, gestation and weight gain. Absolute requirements (Mcal of Net Energy for lactation $(NE_1)/day$) for these functions can be calculated as follows:

RETURN

TO START

Maintenance:

Lactation 1: $NE_{I-maint}(Mcal/day) = 1.2 \times 0.080 \times Liveweight^{0.75}$ Lactation 2: $NE_{I-maint}(Mcal/day) = 1.1 \times 0.080 \times Liveweight^{0.75}$ Lactations 3+: $NE_{I-maint}(Mcal/day) = 1.0 \times 0.080 \times Liveweight^{0.75}$

Milk Production:

 $NE_{I-lact}(Mcal/day) = Milk (kg/day) x [0.3512 + 0.0962 x Fat (%)]$

Gestation (if days pregnant greater than 210):

 NE_{l-gest} (Mcal/day) = 0.024 x Liveweight^{0.75}

Weight Gain:

 $NE_{I-aain}(Mcal/day) = 5.12 x Weight Gain (kg/day)$

Weight loss during lactation will contibute energy to these requirements. This contribution can be calculated as follows:

 $NE_{I-loss}(Mcal/day) = 4.92 x Weight Loss (kg/day)$

Total absolute (Mcal of NE_I/day) energy requirements for lactation are: $NE_{I-total} = NE_{I-maint} + NE_{I-lact} + NE_{I-gest} + NE_{I-gain} - NE_{I-loss}$

Required energy concentration in dietary dry matter (DM) can be calculated as follows:

 $NEI(Mcal/kg DM) = NE_{l-total} \div DM intake (kg/day)$

for more information:

<u>Every Extra Pound is Profit</u>, Alberta Dairy Management
<u>Energy and Protein Status Affect Fertility</u>, *University of Alberta Dairy Research Highlights* Nutrient Requirements of Dairy Cattle, NRC 1989